Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA

نویسندگان

  • Kaiguang Zhao
  • Sorin Popescu
چکیده

a r t i c l e i n f o Keywords: Leaf area index LAI Airborne laser Forest ecosystems Lidar GLOBCARBON Carbon cycling Hemispherical photograph scale Lidar provides enhanced abilities to remotely map leaf area index (LAI) with improved accuracies. We aim to further explore the capability of discrete-return lidar for estimating LAI over a pine-dominated forest in East Texas, with a secondary goal to compare the lidar-derived LAI map and the GLOBCARBON moderate-resolution satellite LAI product. Specific problems we addressed include (1) evaluating the effects of analysts and algorithms on in-situ LAI estimates from hemispherical photographs (hemiphoto), (2) examining the effectiveness of various lidar metrics, including laser penetration, canopy height and foliage density metrics, to predict LAI, (3) assessing the utility of integrating Quickbird multispectral imagery with lidar for improving the LAI estimate accuracy, and (4) developing a scheme to co-register the lidar and satellite LAI maps and evaluating the consistency between them. Results show that the use of different analysts or algorithms in analyzing hemiphotos caused an average uncertainty of 0.35 in in-situ LAI, and that several laser penetration metrics in logarithm models were more effective than other lidar metrics, with the best one explaining 84% of the variation in the in-situ LAI (RMSE = 0.29 LAI). The selection of plot size and height threshold in calculating laser penetration metrics greatly affected the effectiveness of these metrics. The combined use of NDVI and lidar metrics did not significantly improve estimation over the use of lidar alone. We also found that mis-registration could induce a large artificial discrepancy into the pixelwise comparison between the coarse-resolution satellite and fine-resolution lidar-derived LAI maps. By compensating for a systematic sub-pixel shift error, the correlation between two maps increased from 0.08 to 0.85 for pines (n = 24 pixels). However, the absolute differences between the two LAI maps still remained large due to the inaccuracy in accounting for clumping effects. Overall, our findings imply that lidar offers a superior tool for mapping LAI at local to regional scales as compared to optical remote sensing, accuracies of lidar-estimate LAI are affected not only by the choice of models but also by the absolute accuracy of in-situ reference LAI used for model calibration, and lidar-derived LAI maps can serve as reliable references for validating moderate-resolution satellite LAI products over large areas. As a key canopy structural characteristic, leaf area index (LAI) serves as an …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of LAI in Iran based on MODIS satellite data

This study was performed to evaluate the extent of leaf area in Iran from (2002) to (2016) using Remote sensing. For this purpose, we extracted data collection and leaf area index for the Iranian territory from MODIS website. The database was established with programming in MATLAB software to perform mathematical and Statistical calculations repeated. After the analysis of the data in this soft...

متن کامل

Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index

In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blod...

متن کامل

Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery

Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the pr...

متن کامل

Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests

The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 ...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009